Orbica: Using machine vision in GIS

Last week I had the opportunity to sit down with Orbica CEO’s Kurt Janssen and data scientist  Sagar Soni.

Kurt has worked in the Geographic Information Systems (GIS) industry for more than 14-years. Last year he started his own company, Orbica, which does GIS consulting for organisations in the public and private sector. Orbica invests some of its consulting revenue into developing its own product. A major – and rewarding – investment has been hiring data scientist Sagar.

Sagar was taught machine learning during his master’s degree and had the opportunity to put it into practice developing an earth rock image classification system at Dharmsinh Desai University and using deep learning algorithms like Recurrent Neural Networks to solve medical entity detection problems at US health care solutions provider ezDI. Last year he immigrated to NZ and had just the skills and experience Orbica was looking for.

Orbica’s first product automatically identifyies buildings and waterways from aerial photos. This manually intensive job is traditionally done by geographers and cartographers who draw polygons on maps identifying these features using digitising techniques. The first product identifies buildings in urban areas. The 15 million-pixel (4800×3200 ) photos have each pixel covering a 7.5×7.5cm square . Sagar has built a convolution neural network that takes these photos and outputs the vectors representing the polygons where it believes the buildings are.

They have a good amount of training, test and validation data from Land Information New Zealand that consists of the images and polygons that have been hand drawn. Because of the size of the image, Sagar has tiled them into 512×512 images . He built the model over a couple of months with a little trial and error testing the various hyper parameters. The existing model has nine layers, with the standard 3×3 convolutions. He’s currently getting 90 per cent accuracy on the validation set.

Building outlines

RiverDetection_AIThe water classification is very similar, working with 96 million pixel(12000×8000)  images, but with smaller resolution 30x30cm  pixels. The output is the set of polygons representing the water in the aerial images, but the model also classifies the type of water body, e.g. a lake, lagoon, river, canal, etc.

The commercial benefits of these models are self-evident: Orbica can significantly improve the efficiency of producing this data, whether it does this for a client, or it is sold as a service to city and regional councils. These are done regularly – to identify buildings that have been added or removed, or to track how waterways have changed.

WaterBodiesClassification'

Another opportunity has come from the Beyond Conventions pitch competition in Essen, Germany, where Orbica won the Thyssenkrupp Drone Analytics Challenge and the People’s Choice Award. Orbica’s pitch was to use machine vision to analyse drone footage of construction sites to automatically generate a progress update on the construction project. This is a more complex problem given its 3-dimensional nature. Thyssenkrupp has now resourced Orbica to put together a proof of concept, which Sagar is busy working on. Should this go well, Orbica will probably hire at least one other data scientist. DroneImage_Output

Because the technology is developing quickly, Sagar keeps up to date with the latest developments in deep learning through Coursera and Udacity courses. He’s a fan of anything Andrew Ng produces.

To me, Orbica’s use of machine vision technology is an excellent case study for how New Zealand companies can use the latest advances in artificial intelligence. They have a deep knowledge in their own vertical; in this case GIS. They develop an awareness of what AI technologies are capable of in general and have a vision for how those technologies could be used in their own industry.  Finally, they make an investment to develop that vision. In Orbica’s case, the investment was reasonably modest: hiring Sagar. A recurring theme I’m seeing here is hiring skilled immigrants. New Zealand’s image as a desirable place to live – coupled with interesting work – will hopefully make this a win-win for all involved.

For those that would like to hear more. Kurt is speaking at AI Day in Auckland next week.

 

 

 

 

One thought on “Orbica: Using machine vision in GIS

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s